GENETIC DIVERGENCE STUDIES IN MAIZE (Zea mays L.) ACCESSIONS

S. H. Palkar ${ }^{1}$, S. U. Charjan², S. R. Patil ${ }^{3}$, V. T. Chavan ${ }^{4}$ and P. B. Chavan ${ }^{5}$

Abstract

Eighty eight genotypes of maize (Zea mays L.) were evaluated for genetic divergence to identify potential parents for hybridization programme in kharif 2018 at College of Agriculture, Nagpur.Mahalanobis \mathbf{D}^{2} statistics for nine characters viz., days to $\mathbf{5 0 \%}$ tasseling, days to 50% silking, days to maturity, plant height, cob length, cob girth, number of grains $\mathbf{c o b}^{-1}, 100$ grain weight and grain yield plant ${ }^{-1}$ were used in this study for computing genetic divergence. The eighty eight genotypes were grouped into twenty clusters by usingTocher's method. The maximum inter-cluster distance was recorded between cluster IV and cluster XX ($\mathrm{D}=\mathbf{2 8 . 4 1}$) whereas, minimum inter-cluster distance was found between cluster VI and cluster VIII ($\mathrm{D}=1.82$). The canonical analysis and cluster means study revealed the importance of days to 50% tasseling, number of grains cob ${ }^{-1}$, plant height, grain yield plant ${ }^{-1}$ and cob length were considered as criteria for selecting potential parents for hybridization programme and according to this criteria 28 genotypes viz., 52202, 52623, 52025, 52201, 52014, 52291, 52087, 52115, 52196, 52020, 52140, 52327, 52285, 52180, 52497, 52552, 52347, 52045, 52597, $52353,52095,52081,52065,52219,52263,52250,52603$ and 52040 were identified to be used as parents for hybridization programme, which were suggested to be crossed in diallel fashion to obtain superior cross combinations. PKVM-Shatak as it is in separate cluster and distant from other clusters can be further improved to produce new hybrid by crossing with parents 52250, 52020, 52087, 52025, 52014, 52040, 52623, 52201, 52180, 52552, 52115 and 52202.

(Key words : Maize, genetic divergence, \mathbf{D}^{2} statistics, selection)

INTRODUCTION

Maize (Zea mays L.) is the world's important cereal crop after wheat and rice. Maize is known as queen of cereals because it has great yield potential, wider adaptability and attained the leading position among cereals in term of production as well as productivity. Maize can be grown in a wide range of climates, which is used as a food for human consumption and feed for cattle. It belongs to family Poaceae also called as Gramineae and subfamily Panicoideae. It is one of the first plant species identified to photosynthesize by C_{4} pathway with high yield potential. Maize seed oil is also low in linolenic acid (0.7\%) and contains a high level of flavour Rahangdale et al., (2019) Maize provides many of the B vitamins and essential minerals along with fiber, but lacks some other nutrients, such as vitamin B12 and vitamin C, and is, in general, a poor source of calcium, folate and iron. Silage is prepared from green maize plants. Maize is not only used as food, feed and fodder but also used for some industrial purposes for manufacturing viz. starch, alcohol, acetic acid, glucose, paper, furfural, rayon, dyes, synthetic rubber and resin etc. (Pandit et al., 2019).

Assessment of genetic diversity is an essential pre-requisite for identifying potential parents for hybridization. Diverse parents are expected to yield higher frequency of heterotic hybrids in addition to generating a broad spectrum of variability in segregating generations. D^{2} statistic was one of the methods used to study the genetic divergence and it was first time developed by Mahalanobis in 1936. Maize breeders are consistently emphasizing on the importance of diversity among parental genotypes as a significant factor contributing to heterotic hybrids. D^{2} analysis is a useful tool for quantifying the degree of divergence between biological population at genotypic level and in assessing relative contribution of different components to the total divergence both at intra and intercluster level (Murty and Arunachalam, 1966).

MATERIALS AND METHODS

The experimental material comprised of eighty eight germplasm obtained from principle scientist and I/C winter nursery centre/ICAR-IIMR/ Rajendranagar Hyderabad-30 and one check viz. PKVM-Shatak. These eighty eight genotypes were grown in Randomized Block Design in three

[^0]replications with the spacing of $60 \mathrm{~cm} \times 20 \mathrm{~cm}$ accommodating 15 plants in each row for the estimation of genetic divergence analysis in kharif 2018-19. Eighty seven parents and one check viz. PKVM-Shatak was also raised in three replications adjacent to the parents for the estimation of genetic divergence.Recommended package of practices were followed to raise a good crop. The data were recorded on five randomly selected plants from each genotype on following six characters except days to 50% tasseling, days to 50% silking and days to maturity which were recorded on plot basis. The data recorded were subjected to D^{2} statistics to know the genetic diversity among the germplasm as suggested by Mahalanobis (1936). Grouping of genotypes into clusters was done as per the method described by Rao (1952) and identifying the superior genotypes was as per the method described by Bhatt (1970).

RESULTS AND DISCUSSION

The analysis of variance for nine characters revealed highly significant differences among the genotypes for all the nine characters indicating presence of substantial genetic variability for the characters studied (Table 1). Based on the magnitude of D^{2} values, 88 genotypes were grouped into 20 clusters (Table 2). Cluster I was the largest comprising of 65 genotypes. The next largest cluster was cluster IX which included 5 genotypes, cluster II, III, IV, V, VI, VII, VIII, X, XI, XII, XIII, XIV, XV, XVI, XVII, XVIII, XIX, XX included only one genotype each. Average intra and inter-cluster D^{2} values were presented in table 3 . The intra-cluster variation ranged from 0.00 to 5.46 . Cluster IX possessed highest intracluster distance ($\mathrm{D}=5.46$) followed by cluster I ($\mathrm{D}=4.96$). The average inter-cluster distance was maximum between cluster IV and cluster XX ($\mathrm{D}=28.41$) followed by cluster XI and cluster XX ($\mathrm{D}=26.12$), cluster II and cluster XIX ($\mathrm{D}=$ 25.72), cluster XV and cluster XX ($\mathrm{D}=25.56$), cluster V and cluster XIX ($\mathrm{D}=25.06$), cluster IV and cluster XIX ($\mathrm{D}=$ 23.26) and cluster XVII and cluster XIX ($\mathrm{D}=23.24$). This suggests more variability in genetic makeup of genotypes included in these clusters. The inter-cluster distance was found to be minimum between cluster VI and cluster VIII (D $=1.82$).

The per cent contribution of nine characters towards total genetic divergence (Table 4) showed that the per cent contribution of days to 50% tasseling to the total divergence was maximum (18.34\%) followed by 100 grain weight (17.08\%), plant height (14.47\%), grain yield plant ${ }^{-1}$ (13.19\%), cob girth (13.09\%), days to maturity (11.05\%), cob length (6.64\%) and number of grains cob $^{-1}$ (4.05\%). Relatively days to 50% silking (2.09\%) contributed less towards genetic divergence.Varaprasad and Shivani (2017) also in agreement with high contribution of number of kernels row $^{-1}$ (22.56\%), 100 kernel weight (20.19\%), days to 50% tasseling (11.84\%) and grain yield plant ${ }^{-1}$ (10.30\%).

The value of first five canonical vectors and canonical roots are presented in table 5 and in table 6
respectively. The first three canonical roots accounted for 54.03% of the observed variability in material ($\lambda_{1}=25.93 \%$, $\lambda_{1}=15.11 \%$ and $\lambda_{3}=12.99 \%$). The overall contribution of the five canonical roots to total variability among 88 genotypes was 75.60% suggesting the completion of major portion of differentiation in first five phases. This indicated that differentiation for nine characters among 88 genotypes was nearly completed in five phases. Further the coefficients in the first five canonical vectors indicate that out of nine quantitative characters grain yield plant ${ }^{-1}$, number of grains cob^{-1}, cob length, plant height, cob girth and 100 grain weight were important characters in the first vector which was major access of differentiation accounting for 25.93% of total variation. Days to 50% tasseling and cob length were important characters in secondary access of differentiation which accounted for 15.11% of total variation. Important characters in vector III were days to maturity, number of grains cob $^{-1}$ and days to 50% silking accounting to 12.99% of variation. Plant height and cob girth were important characters in vector IV which accounted for 11.08% and days to 50% tasseling, days to maturity, 100 grain weight, plant height and cob girth were important source of variation in vector V accounting to 10.49% of variation. This suggested that parents selected on the basis of characters like days to 50% tasseling, number of grains cob^{-1}, plant height, cob girth and cob length may be expected to be genetically diverse. Akhi et al. (2017) and Varaprasad and Shivani (2017) also carried out the canonical analysis in maize and reported that days to 50% silking, plant height, cob length (cm), number of rows cob ${ }^{-1}$, number of grains cob^{-1} for both the vectors I and II were positive and these are indication of the important components of genetic divergence.

Data regarding cluster means for all the nine characters are presented in table 7. The genotypes from cluster XII possessed the highest cluster mean for plant height, 100 grain weight and cob girth. Cluster XIX showed maximum mean for number of grains cob^{-1} and grain yield plant ${ }^{-1}$. Cluster VII showed maximum mean for days to 50\% tasseling and days to 50% silking. Cluster VIII showed maximum mean for cob length and cluster XIII for days to maturity, the genotypes with high mean values may be used as parents in future hybridization programme.

According to Bhatt (1970) the mean statistical distance may be considered arbitrarily as a guide line and crosses between parents belonging to different clusters having same or higher inter-cluster distance than the mean statistical distance may be attempted. The crosses should be chosen from widely distinct clusters. But, it is observed in the present study that there might be several genotypes included in such widely separated clusters. Then the question arise which of the genotypes from these more diverse clusters may be used for crossing. In that case preference for those genotypes which perform better for the characters (days to 50% tasseling, number of grains cob^{-1}, plant height, grain yield plant ${ }^{-1}$ and cob length) which contributed much towards divergence should be given. In
Table 1.Analysis of variance for various characters

Table 3. Average intra and inter-cluster distance by Tocher's method

Cluster	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII	XIII	XIV	XV	XVI	XVII	XVIII	XIX	XX
I	4.96	6.69	6.56	6.94	9.16	8.32	7.55	8.30	7.66	7.70	6.71	7.56	6.84	7.55	7.81	6.98	8.77	9.20	13.57	16.35
II		0.00	8.53	2.13	8.76	17.52	10.55	18.19	10.83	5.75	6.39	14.47	7.44	4.79	8.91	6.79	6.25	9.08	25.72	20.31
III			0.00	7.38	12.84	7.99	12.27	10.37	11.99	13.59	8.40	10.66	3.43	6.85	4.00	11.74	8.31	11.15	11.13	23.48
IV				0.00	12.81	14.20	11.25	15.56	12.51	10.84	4.48	11.50	6.72	8.57	7.01	10.47	6.95	10.09	23.26	28.41
V					0.00	17.89	4.14	12.48	11.39	9.46	19.31	14.44	14.83	11.31	16.22	10.41	11.18	19.82	25.06	11.57
VI						0.00	13.79	1.82	7.40	14.90	10.42	6.09	7.71	15.57	10.90	16.60	12.92	10.56	5.94	18.35
VII							0.00	9.10	10.81	12.21	14.82	6.90	17.50	12.51	10.92	7.64	14.92	15.03	20.00	15.98
VIII								0.00	7.95	14.87	13.56	4.94	10.85	18.39	14.56	16.04	13.27	14.69	8.80	16.22
IX									5.46	8.58	12.18	11.60	9.76	8.83	12.07	9.63	10.89	9.27	16.56	10.72
X										0.00	8.01	12.19	10.81	8.54	15.84	7.83	10.06	7.72	18.09	8.00
XI											0.00	7.24	6.78	10.73	8.74	9.04	11.13	5.88	13.67	26.12
XII												0.00	14.25	18.34	11.81	11.51	18.24	8.79	8.69	21.30
XIII													0.00	7.17	8.60	12.65	5.30	12.40	13.68	22.52
XIV														0.00	5.00	5.68	8.97	9.86	20.72	15.86
XV															0.00	10.28	12.50	9.81	14.03	25.56
XVI																0.00	16.16	9.19	21.51	17.58
XVII																	0.00	16.06	23.24	18.62
XVIII																		0.00	16.22	18.14
XIX																			0.00	22.06
XX																				0.00

Table 4. Contribution of individual character to divergence

Sr.No.	Source		Time rank	$1^{\text {st }} \quad \mathbf{P}$	Per cent contribution				
1.	Days to 50\% tasseling		702		18.34				
2.	Days to 50\% silking		80		2.09				
3.	Days to maturity		423		11.05				
4.	Plant height (cm)		554		14.47				
5.	Cob length (cm)		254		6.64				
6.	Cob girth (cm)		501		13.09				
7.	Number of grains cob ${ }^{-1}$		155		4.05				
8.	100 grain weight (g)		654		17.08				
9.	Grain yield plant ${ }^{-1}$ (g)		505		13.19				
Total			3828		100				
Table 5. The value of canonical vectors									
Vector	Days to 50% tasseling	Days to 50% silking	Days to Maturity	Plant Height (cm)	Cob Length (cm)	Cob Girth (cm)	Number of grains cob $^{-1}$	100 grains weight (g)	Grain yield plant ${ }^{1}$ (g)
I	-0.076	-0.329	-0.045	0.289	0.456	0.180	0.510	0.104	0.538
II	0.574	-0.227	-0.178	0.061	0.163	-0.662	0.033	-0.342	0.012
III	-0.104	0.145	0.619	0.096	-0.102	0.035	0.350	-0.662	-0.053
IV	-0.018	-0.278	-0.416	0.608	-0.399	0.302	-0.078	-0.310	-0.162
V	0.631	-0.053	0.505	0.340	-0.046	0.248	-0.117	0.377	-0.089

[^1]Table 7. Cluster means for nine characters in maize

Cluster	$\begin{gathered} \hline \text { Days to } \\ 50 \% \\ \text { tasseling } \end{gathered}$	Days to 50\% silking	Days to Maturity	Plant Height (cm)	Cob Length (cm)	Cob Girth (cm)	Number of grains cob ${ }^{-1}$	100 grains weight (g)	Grain yield plant ${ }^{-1}$ (g)
I	54.46	57.72	86.12	149.32	13.30	10.74	280.79	18.68	51.44
II	52.67	56.33	86.00	136.87	11.98	10.35	202.93	17.31	27.49
III	54.00	57.00	88.67	115.80	14.15	11.32	332.27	20.99	57.85
IV	52.33	56.67	86.33	148.00	13.06	11.64	222.73	19.19	40.85
V	57.33	60.33	88.00	138.73	14.33	9.31	186.20	18.05	31.75
VI	55.00	58.33	87.33	168.40	16.98	12.44	403.90	19.11	77.11
VII	59.00	62.33	85.67	156.67	13.61	10.73	240.00	19.87	46.03
VIII	56.00	59.33	87.67	177.67	17.42	11.72	367.20	20.02	73.63
IX	55.93	59.07	87.33	161.93	13.71	10.80	309.11	15.48	49.02
X	52.67	55.67	82.33	152.87	14.04	9.83	258.07	15.29	35.63
XI	50.67	54.33	82.67	161.27	13.09	11.74	301.67	19.29	56.79
XII	55.67	58.67	82.67	182.13	16.87	12.87	341.70	21.26	69.63
XIII	51.00	54.33	89.33	131.13	13.44	10.52	296.50	18.49	55.16
XIV	55.33	58.33	87.67	109.53	9.53	9.69	253.60	15.76	34.56
XV	56.67	60.33	86.67	116.27	11.63	11.96	304.80	19.16	55.85
XVI	55.67	57.67	85.33	148.33	8.98	9.73	234.87	17.57	37.48
XVII	51.33	56.33	89.00	133.27	13.86	9.37	287.67	18.09	41.69
XVIII	54.33	57.00	82.67	162.40	14.61	12.82	370.60	16.83	47.54
XIX	55.00	57.67	83.00	144.60	17.07	12.33	414.30	20.03	89.69
XX	57.67	60.33	84.33	146.60	15.50	9.06	316.40	12.97	38.77
S. D.	2.29	2.06	2.29	19.70	2.27	1.21	63.61	2.09	16.47
Variance	5.24	4.23	5.26	387.97	5.17	1.47	4045.73	4.37	271.13

Table 8. Selection of cluster combinations, potential parents and cross combination on the basis of genetic diversity

Sr.No.	Cluster combination	Average inter-cluster distance	Cross Combination	Traits
1	$\mathrm{IV} \times \mathrm{XX}$	28.41	52202×52250	Number of grains cob ${ }^{-1}$
2	$\mathrm{X} \times \mathrm{XX}$	26.12	52623×52250	Cob length
3	$\mathrm{II} \times \mathrm{XIX}$	25.72	52025×52603	Grain yield plant ${ }^{-1}$
4	$\mathrm{XV} \times \mathrm{XX}$	25.56	52201×52250	Number of grains cob ${ }^{-1}$
5	$\mathrm{V} \times \mathrm{XIX}$	25.06	52014×52603	Grain yield plant ${ }^{-1}$
6	III \times XX	23.48	52291×52250	100 grain weight
7	$\mathrm{IV} \times \mathrm{XIX}$	23.26	52202×52603	Grain yield plant ${ }^{-1}$
8	XVII \times XIX	23.24	52087×52603	Grain yield plant ${ }^{-1}$
9	XII \times XX	22.52	PKVM-Shatak $\times 52250$	Cob girth
10	XIX \times XX	22.06	52603×52250	Cob length
11	XVI \times XIX	21.51	52115×52603	Grain yield plant ${ }^{-1}$
12	$\mathrm{XI} \times \mathrm{XX}$	21.30	52196×52250	Cob length
13	XIV \times XIX	20.72	52020×52603	Grain yield plant ${ }^{-1}$
14	$\mathrm{II} \times \mathrm{XX}$	20.31	52025×52250	Cob girth
15	$\mathrm{VII} \times$ XIX	20.00	52140×52603	Grain yield plant ${ }^{-1}$
16	$\mathrm{V} \times$ XVIII	19.82	52014×52234	Number of grains cob ${ }^{-1}$
17	$\mathrm{V} \times \mathrm{XI}$	19.31	52014×52196	Cob girth
18	XVII \times XX	18.62	52087×52250	Number of grains cob ${ }^{-1}$
19	VIII \times XIV	18.39	52327×52020	Cob length
20	$\mathrm{VI} \times \mathrm{XX}$	18.35	52285×52250	Grain yield plant ${ }^{-1}$
21	XII \times XIV	18.34	PKVM-Shatak $\times 52020$	100 grain weight
22	XII \times XVII	18.24	PKVM-Shatak $\times 52087$	Cob girth
23	II \times VIII	18.19	52025×52327	Cob length
24	XVIII \times XX	18.14	52234×52250	Number of grains cob ${ }^{-1}$
25	X \times XIX	18.09	52623×52603	Grain yield plant ${ }^{-1}$
26	$\mathrm{V} \times \mathrm{VI}$	17.89	52014×52285	Grain yield plant ${ }^{-1}$
27	$\mathrm{XVI} \times \mathrm{XX}$	17.58	52115×52250	100 grain weight
28	$\mathrm{III} \times \mathrm{VI}$	17.52	52291×52285	Grain yield plant ${ }^{-1}$
29	VII \times XIII	17.50	52140×52040	Number of grains cob ${ }^{-1}$
30	$\mathrm{VI} \times \mathrm{XVI}$	16.60	52285×52115	Number of grains cob ${ }^{-1}$
31	IX \times XIX	16.56	$\left.\begin{array}{l} 52180 \\ 52497 \\ 52552 \\ 52347 \\ 52045 \end{array}\right]-\times 52603$	Grain yield plant ${ }^{-1}$
32	$\mathrm{I} \times \mathrm{XX}$	16.35	$\left.\begin{array}{l} 52196 \\ 52597 \\ 52353 \\ 52095 \\ 52081 \\ 52065 \\ 52219 \\ 52219 \end{array}\right]-\times 52250$	Number of grains cob^{-1}
33	VIII \times XX	16.22	52327×52250	Cob length
34	XVIII \times XIX	16.22	52234×52603	Number of grains cob ${ }^{-1}$
35	$\mathrm{V} \times \mathrm{XV}$	16.22	52014×52201	100 grain weight
36	XVI \times XVII	16.16	52115×52087	Cob girth
37	XVII \times XVIII	16.06	52087×52234	Number of grains cob ${ }^{-1}$
38	VIII \times XVI	16.04	52327×52115	Cob girth
39	XIII \times XX	15.86	52040×52250	Number of grains cob ${ }^{-1}$
40	$\mathrm{X} \times \mathrm{XV}$	15.84	52623×52201	Grain yield plant ${ }^{-1}$

	326			
41	VI \times XIV	15.57	52285×52020	Grain yield plant ${ }^{-1}$
42	IV \times VIII	15.56	52202×52327	Cob length
43	VII \times XVIII	15.03	52140×52234	Number of grains cob ${ }^{-1}$
44	VII \times XVII	14.92	52140×52087	100 grain weight
45	$\mathrm{VI} \times \mathrm{X}$	14.90	52285×52623	Cob girth
46	VIII \times X	14.87	52327×52623	Grain yield plant ${ }^{-1}$
47	V \times XIII	14.83	52014×52040	Grain yield plant ${ }^{-1}$
48	VII \times XI	14.82	52140×52196	Cob girth
49	VIII \times XVIII	14.69	52327×52234	Number of grains cob ${ }^{-1}$
50	VIII \times XV	14.56	52327×52201	Grain yield plant ${ }^{-1}$
51	II \times XII	14.47	$52025 \times$ PKVM-Shatak	Cob girth
52	V \times XII	14.44	$52014 \times$ PKVM-Shatak	Cob girth
53	XII \times XIII	14.25	PKVM-Shatak $\times 52040$	Cob girth
54	$\mathrm{IV} \times \mathrm{VI}$	14.20	52202×52285	Number of grains cob^{-1}
55	XV \times XIX	14.03	52201×52603	Grain yield plant ${ }^{-1}$
56	$\mathrm{VI} \times$ VII	13.79	52285×52140	Cob length
57	XIII \times XIX	13.68	52040×52603	Grain yield plant ${ }^{-1}$
58	XI \times XIX	13.67	52196×52603	Grain yield plant ${ }^{-1}$
59	$\mathrm{III} \times \mathrm{X}$	13.59	52291×52623	Cob girth
			$\left.\begin{array}{ll} 52196 \\ 52597 \end{array}\right]$	
60	I \times XIX	1357	52353 52095	
60	$1 \times$ XIX	13.57	52095 52081 52065 52219 52263	Grain yield plant ${ }^{-1}$
61	VIII \times XI	13.56	52327×52196	100 grain weight
62	VIII \times XVII	13.27	52327×52087	Cob girth
63	VI \times XVII	12.92	52285×52087	Number of grains cob ${ }^{-1}$
64	$\mathrm{III} \times \mathrm{V}$	12.84	52291×52014	Cob girth
65	$\mathrm{IV} \times \mathrm{V}$	12.81	52202×52014	Number of grains cob ${ }^{-1}$
66	XIII \times XVI	12.65	52040×52115	Number of grains cob ${ }^{-1}$
67	$\mathrm{VII} \times$ XIV	12.51	52140×52020	Grain yield plant ${ }^{-1}$
			52180]	
			52497	
68	$\mathrm{IX} \times \mathrm{IV}$	12.51	52552 - x 52202	Number of grains cob^{-1}
			52347	
			52045 -	
69	XV \times XVII	12.50	52201×52087	Grain yield plant ${ }^{-1}$
70	$\mathrm{V} \times$ VIII	12.48	52014×52327	Cob girth
71	XIII \times XVIII	12.40	52040×52234	Number of grains cob ${ }^{-1}$
72	III \times VII	12.27	52291×52140	Cob length
73	$\mathrm{VII} \times \mathrm{X}$	12.21	52140×52623	Grain yield plant ${ }^{-1}$
74	X \times XII	12.19	$52623 \times$ PKVM-Shatak	Cob girth
			52180]	
			52497	
75	IX \times XI	12.18	52552 $-\times 52196$ 	Number of grains cob ${ }^{-1}$
			52045 -	
			52180	
			52497	
76	$\mathrm{IX} \times \mathrm{XV}$	12.07	$52552-\times 52201$	Number of grains cob^{-1}
			52347	
			52045	
			52180]	
			52497	
77	IX \times III	11.99	52552 - × 52291	Grain yield plant ${ }^{-1}$
			52347	
			52045 ـ	

327

78	XII \times XV	11.81	PKVM-Shatak $\times 52201$	Cob girth
79	$\mathrm{III} \times \mathrm{XVI}$	11.74	52291×52115	Grain yield plant ${ }^{-1}$
80	IX \times XII	11.60	$\left.\begin{array}{l} 52180 \\ 52497 \\ 52552 \\ 52347 \\ 52045 \end{array}\right]-\times \text { PKVM-Shatak }$	Grain yield plant ${ }^{-1}$
81	$\mathrm{V} \times \mathrm{XX}$	11.57	552014×52250	Grain yield plant ${ }^{-1}$
82	XII \times XVI	11.51	PKVM-Shatak $\times 52115$	Cob girth
83	IV \times XII	11.50	$52202 \times$ PKVM-Shatak	Cob girth
84	$\mathrm{IX} \times \mathrm{V}$	11.39	$\left.\begin{array}{l} 52180 \\ 52497 \\ 52552 \\ 52347 \\ 52045 \end{array}\right]-\quad \times 52014$	Number of grains cob^{-1}
85	$\mathrm{V} \times \mathrm{XIV}$	11.31	52014×52020	Grain yield plant ${ }^{-1}$
86	$\mathrm{IV} \times$ VII	11.25	52202×52140	Cob girth
87	$\mathrm{V} \times$ XVII	11.18	52014×52087	Number of grains cob ${ }^{-1}$
88	III \times XVIII	11.15	52291×52234	Number of grains cob ${ }^{-1}$
89	$\mathrm{III} \times$ XIX	11.13	52291×52603	Grain yield plant ${ }^{-1}$
90	XI \times XVII	11.13	52196×52087	100 grain weight
91	VII \times XV	10.92	52140×52201	Cob girth
92	$\mathrm{VI} \times \mathrm{XV}$	10.90	52285×52201	Number of grains cob^{-1}
93	IX \times XVII	10.89	$\left.\begin{array}{l} 52180 \\ 52497 \\ 52552 \\ 52347 \\ 52045 \end{array}\right]-\mathrm{x} 52087$	Grain yield plant ${ }^{-1}$
94	VIII \times XIII	10.85	52327×52040	Cob length
95	$\mathrm{IV} \times \mathrm{X}$	10.84	52202×52623	Cob length
			$\begin{array}{ll} 52180 \\ 52497 \end{array}$	
96	IX \times II	10.83	$\begin{aligned} & 52552 \\ & 52347 \\ & 52045 \end{aligned} \quad \text { - x } 52025$	100 grain weight
97	X \times XIII	10.81	$\begin{aligned} & 52623 \times 52040 \\ & 52180 \\ & 52497 \end{aligned} \quad$	Number of grains cob ${ }^{-1}$
98	$\mathrm{IX} \times$ VII	10.81	$\begin{aligned} & 52552 \\ & 52347 \\ & 52045 \end{aligned} \quad-\quad \text { x } 52140$	Grain yield plant ${ }^{-1}$
99	XI \times XIV	10.73	$\begin{aligned} & 52196 \times 52020 \\ & 52180 \\ & 52497 \end{aligned}$	Number of grains cob ${ }^{-1}$
100	IX \times XX	10.72	$\begin{array}{l\|l} 52552 \\ 52347 \\ 52045 \end{array} \quad-\quad \text { x } 52250$	Grain yield plant ${ }^{-1}$

the present study all possible combinations beyond the mean inter-cluster distance ($\mathrm{D}=10.70$) formed from different clusters have been arranged in descending order of magnitude of genetic distance and promising hundred cluster combinations are presented in table 8. Other practical considerations like grain yield plant ${ }^{-1}$, days to 50% tasseling, number of grains cob^{-1}, plant height and cob length were also taken into account while choosing the genotypes from the selected cluster combinations, which can be crossed in diallel fashion to obtain superior cross combinations.

Based on the above mentioned criteria 28 genotypes viz., 52202, 52623, 52025, 52201, 52014, 52291, 52087, 52115, 52196, 52020, 52140, 52327, 52285, 52180, 52497, 52552, 52347, 52045, 52597, 52353, 52095, 52081, 52065, 52219, 52263, 52250, 52603 and 52040 were identified to be used as parents for hybridization programme, which were suggested to be crossed in diallel fashion to obtain superior cross combinations. PKVM-Shatak as it is in separate cluster and distant from other clusters can be further improved to produce new hybrid by crossing with parents 52250, 52020, 52087, 52025, 52014, 52040, 52623, 52201, 52180, 52552, 52115 and 52202 .

REFERENCES

Akhi, A.H., S. Ahmed, A.N.M.S. Karim, F. Begum and M.M. Rohman, 2017. Genetic divergence of exotic inbred lines of maize (Zea mays L.). Bangladesh J. Agril. Res. 42(4) : 665-671.
Bhatt, G.M. 1970. Multivariate analysis approach to selection of parents for hybridization aiming at in the improvement in self pollinated crop. Aust. J. agric. Res. 21 : 1-7.
Mahalanobis, P.C. 1936. On the generalized distance in statistics. Proc. Nat. Inst. Sci. India, 12 : 49-55.
Murty, B.R. and V. Arunachalam. 1966. The nature of divergence in relation to breeding system in some crop plants. Indian J. Genet. 26 : 188-198.
Pandit, M.B., S.U. Charjan, S.R. Kamdi, S.R. Patil, P.Z. Rahangdale, M. K. Moon and D.Y. Upadhyay, 2019. Performance of double cross hybrids in maize (Zea mays L.) J. Soils and Crops, 29 (1) : 146-151
Rahangdale, P.Z., S.R. Kamdi, S.R. Patil, R.D. Deotale, M.B. Pandel, D.Y. Upadhyay and G.A. Kankal, 2019. Generation mean analysis in maize (Zea mays L.) J. Soils and crops 29(1) : 126:130
Rao, C.R. 1952. Advanced statistical methods in biometric research. End. L, John Wiley and Sons, Inc. New York.
Varaprasad, B.V. and D. Shivani, 2017. Genotype clustering of maize (Zea mays L.) germplasm using Mahalanobis D^{2} satistic. J. Global Biosci. 6(2) : 4776-4783.

Rec. on 20.08.2019 \& Acc. on 28.08.2019

[^0]: 1, $4 \& 5$. P.G. Students, Agril. Botany Section, College of Agriculture, Nagpur, India
 2. Asstt. Professor, Agril. Botany Section, College of Agriculture, Nagpur, India
 3. Professor (CAS), Agril. Botany Section, College of Agriculture, Nagpur, India

[^1]: Table 6. Value of five canonical root and their contribution expressed as per cent of the total variation

 | Root | Value | Contribution (\%) |
 | :---: | :---: | :---: |
 | $\ddot{\mathrm{e}}_{1}$ | 2.334 | 25.93 |
 | $\ddot{\mathrm{e}}_{2}$ | 1.360 | 15.11 |
 | $\ddot{\mathrm{e}}_{3}$ | 1.169 | 12.99 |
 | $\ddot{\mathrm{e}}_{4}$ | 0.997 | 11.08 |
 | \ddot{e}_{5} | 0.944 | 10.49 |
 | Total | 6.804 | 75.60 |
 | Sum of all canonical root | 9.000 | - |
 | Residual | 2.196 | 24.40 |

