

BIODIVERSITY AND CONSERVATION OF LOCAL FLORA IN IMPHAL WEST, MANIPUR

M. R. Khan¹, Kh. Napoleon Singh², Y. Mrinamala Devi³ and L. Dinendra Sharma⁴

ABSTRACT

Survey was conducted from June 2023 to May 2024 in the Imphal West district with the aim to explore the plant diversity, medicinal value, and conservation status of local species. A total of 80 plant species were identified and classified based on growth habits, medicinal uses, plant parts employed, and conservation status. Herbs were the most prevalent, comprising 45% of the species, followed by shrubs (30%) and trees (25%). Notably, 65% of the species were recognized for their medicinal properties, highlighting the region's rich ethnobotanical significance. Leaves were the most commonly used plant part for medicinal purposes (50%), with roots being the second most frequent (25%). The conservation status of the plants revealed that 70% were not considered threatened, while 20% were threatened, and 10% were endangered, emphasizing the need for urgent conservation efforts, particularly for medicinal plants susceptible to overexploitation. The Zingiberaceae family emerged as the most significant, representing 30% of the species, followed by Lamiaceae (15%), Asteraceae (12%), and Fabaceae (10%). The study underscores the importance of plant biodiversity in the region, both for its ecological benefits and potential medicinal applications. The findings call for the establishment of conservation areas, sustainable harvesting practices, and the integration of traditional knowledge into conservation strategies. Further research into the pharmacological properties of these plants and the discovery of new species with medicinal potential is crucial for enhancing the sustainable use of the region's plant resources.

(Key words : Ethnobotany, medicinal plants, conservation status, Zingiberaceae, plant biodiversity)

INTRODUCTION

The natural world has been a source of invaluable resources for humankind for centuries, with plants serving as the foundation for numerous aspects of human life. In particular, plants have been integral to traditional medicine systems across the globe, providing remedies for a wide range of ailments. The relationship between plants and humans is especially prominent in the field of ethnobotany, which focuses on the study of the uses of plants by indigenous and local communities (Singh and Singh, 2010). This knowledge encompasses not only medicinal properties but also cultural, ecological, and economic aspects of plant usage. The diversity of plant species, each with unique chemical, medicinal, and ecological attributes, plays a critical role in the health and well-being of local populations (Wangkheirakpam and Chhetry, 2018). However, as populations grow, pressures on plant resources, such as habitat destruction and overharvesting, threaten to erode the availability of these invaluable species (Keisham and Sharma, 2012).

The northeastern part of India, particularly Manipur, is known for its rich biodiversity and is home to numerous plant species, many of which are used for medicinal, cultural, and dietary purposes (Phurailatpam and Khumbongmayum, 2020). Among these species, members of the Zingiberaceae family, including *Alpinia galanga*, *Hedychium flavum*, and *Amomum aromaticum*, stand out for their ethnobotanical significance. These species have been used by local communities for centuries, providing medicinal compounds that are integral to traditional health practices (Singh and Roy, 2017). They are also significant for their role in the local economy, especially in the form of spices, essential oils, and other value-added products (Mehta *et al.*, 2022). Despite their importance, there is a growing concern regarding the sustainability of their use due to over-exploitation and environmental threats (Devi and Singh, 2015). The increasing demand for these plants in both local and global markets further exacerbates the need for their sustainable management and conservation (Rai *et al.*, 2021).

This research aimed to explore the plant diversity and medicinal significance of species in the Imphal West

1. Assoc. Professor, Dept. of Botany, Lilong Haoreibi College, Lilong, Manipur

2. Asst. Professor, Dept. of Botany, S. Kula Woman's College, Nambol, Manipur

3&4*. Asst. Professors, Dept. of Botany, Pravabati College, MayangImphal, Manipur (*Corresponding author)

district of Manipur, focusing on the potential bioactive compounds they contain. The study sought to assess the ethnobotanical uses of these plants by identifying the plant parts commonly utilized, and to examine their conservation status. With an emphasis on understanding the potential for these plants in bio-prospecting and biotechnological applications, the research hopes to provide valuable insights into their ecological roles and the risks they face due to environmental and human-induced pressures (Naorem and Devi, 2018). Ethnobotanical studies are crucial for bridging the gap between indigenous knowledge and modern scientific research. In Manipur, where traditional medicine still plays a dominant role, understanding the local use of plants and their active compounds can contribute to the development of sustainable medicinal resources (Wangkheirakpam and Khumbongmayum, 2020). The diversity of plant species in this region, coupled with the wealth of traditional knowledge about their uses, provides an excellent opportunity to explore their medicinal and ecological potential. However, the overharvesting of medicinal plants for commercial purposes and the loss of biodiversity threaten to disrupt the delicate balance between utilization and conservation (Singh and Singh, 2010).

This study also recognizes the need to address the gaps in current scientific understanding of the molecular and pharmacological properties of these plants. In particular, the potential for the development of value-added products, such as herbal medicines and functional foods, is significant but under-explored (Patel and Srinivasan, 2015). Through a combination of field surveys, laboratory analysis, and literature review, the study aimed to identify key plant species that can be further researched for their pharmacological activities, including antioxidant, antimicrobial, and anti-inflammatory properties (Singh and Singh, 2014). Furthermore, this research investigates the conservation status of the identified species. The increasing pressures of deforestation, land conversion, and unsustainable harvesting practices threaten to diminish the rich plant resources of the region (Pandey *et al.*, 2024). The study also aimed to assess the extent of these threats and provide recommendations for the sustainable use and conservation of medicinal plants, ensuring that local communities can continue to benefit from them while preserving biodiversity (Chanu and Singh, 2017).

By combining the exploration of traditional knowledge with modern scientific methods, this research aimed to contribute to a deeper understanding of the complex relationships between plants, people, and the environment. The findings of this study will not only inform conservation efforts but also enhance the potential for the sustainable use of plant resources, supporting both ecological health and the economic well-being of local communities in Manipur. Ultimately, this research underscores the importance of preserving plant diversity as a means of ensuring both environmental sustainability and human health.

MATERIALS AND METHODS

Study site

The study was conducted in Imphal West district, one of the most populated regions in Manipur, known for its diverse communities and rich plant biodiversity. The district's ecological diversity provided an ideal environment for assessing plant species, their medicinal applications, and conservation status.

Field survey and data collection

A comprehensive field survey was carried out from June 2023 to May 2024 in Imphal West district, using various ethnobotanical data collection methods, including formal and informal interviews, structured and semi-structured questionnaires, and open-ended and close-ended questions. Local traditional healers (Maiba-Maibis), practitioners, knowledgeable holders, and elderly individuals were consulted to document indigenous knowledge regarding plant use. The survey focused on identifying and classifying plant species based on growth habits (herbs, shrubs, trees), medicinal properties, plant parts used, and conservation status. The conservation status of each species was assessed through field observations, community knowledge, and reference literature. Data were analysed to determine the most commonly utilized plant parts, dominant plant families, and potential threats to medicinal species. The study emphasizes the significance of traditional knowledge in biodiversity conservation and reinforces the need for sustainable harvesting practices and conservation strategies.

RESULTS AND DISCUSSION

A total of 80 plant species were identified during the study, classified according to their growth habits, medicinal value, plant parts used, and conservation status. Of the total species, herbs were the most predominant, making up 45% of the species surveyed, followed by shrubs at 30%, and trees, which constituted 25%. These growth forms reflect the diverse range of species found in the study area. In terms of medicinal value, the majority of the species, accounting for 65%, were found to possess some form of medicinal properties, indicating the rich ethnobotanical significance of the flora in the study area. The remaining 35% were classified as non-medicinal, suggesting that while a large portion of the flora holds therapeutic potential, there is also a significant number of plants that are not used for medicinal purposes. This highlights the diverse utility of plants in the region, not only for their medicinal uses but possibly for other purposes such as ecological balance, cultural, or economic significance. The plant parts used in medicinal preparations varied widely across the species. Leaves emerged as the most commonly used part, with 50% of the species employing the leaves for medicinal purposes. This is consistent with previous studies that highlight leaves

as a key part of plant-based remedies due to their accessibility and high concentration of bioactive compounds. The roots were the second most commonly used plant part, accounting for 25% of the species. Roots often serve as a rich source of bioactive compounds, such as alkaloids, flavonoids, and essential oils, which could explain their frequent use. Flowers, while still important, were used in medicinal preparations from only 15% of the species, followed by seeds (5%), fruits (3%), and bark (2%). These results suggest a preference to be given for vegetative parts like leaves and roots in local medicinal practices.

Conservation status of the plants revealed that the majority, 70%, were not considered threatened, reflecting a stable presence of these species in the area. However, 20% of the species were categorized as threatened, which indicates the potential risk of overexploitation or habitat loss. Furthermore, 10% of the species were classified as endangered, emphasizing the need for conservation efforts to safeguard these plants, especially those with medicinal uses, which could face additional pressures due to increasing demand. Regarding family composition, the Zingiberaceae family was the most significant, representing 30% of the species identified. This family includes plants known for their rich medicinal properties and economic importance, such as ginger and turmeric. Other prominent families included Lamiaceae (15%), Asteraceae (12%), and Fabaceae (10%), with the remaining species distributed among various families such as Apocynaceae, Solanaceae, and Rutaceae. The diversity of families within the study area reflects the ecological richness and variety of plant species in the region, which contribute to both the biodiversity and ethnobotanical knowledge of the local communities.

The study of the 80 plant species from the region revealed several important insights into plant diversity, medicinal use, and conservation status, contributing significantly to the ethnobotanical knowledge of the area (Singh and Singh, 2010). The prevalence of herbs (45%) in the study area is in line with the findings from similar studies in other regions, where herbs are often dominant in temperate and subtropical ecosystems (Wangkheirakpam and Chhetry, 2018). Herbs typically thrive in diverse ecosystems, providing various ecological services such as supporting pollinators and preventing soil erosion. Shrubs and trees, although less frequent, contribute significantly to the structural complexity of the ecosystem, offering a variety of habitats for wildlife and important resources for local communities (Phurailatpam and Khumbongmayum, 2020). The diversity of growth forms found in this study suggests that the region offers a favourable environment for a wide range of plant species, attributed to its climatic conditions, soil type, and topography (Rai *et al.*, 2021).

The high number of medicinal plants (65%) among the 80 species indicates a profound reliance on plant-based remedies by the local communities (Devi and Singh, 2015). Medicinal plants play a central role in traditional healthcare systems, especially in areas where access to modern

medicine is limited (Wangkheirakpam and Khumbongmayum, 2020). This aligns with the ethnobotanical knowledge of many indigenous communities, where plant-based therapies are often passed down through generations. Many of these plants contain bioactive compounds such as alkaloids, flavonoids, and terpenoids, which warrant further pharmacological studies (Singh and Roy, 2017). Leaves (50%) were the most commonly used plant parts, consistent with studies worldwide where leaves are preferred due to their availability and ease of harvesting (Naorem and Devi, 2018). Additionally, leaves are rich in bioactive compounds, making them effective in treating a wide range of ailments (Patel and Srinivasan, 2015). The significant use of roots (25%) suggests that many local remedies rely on substances that accumulate in underground parts of plants, such as alkaloids, essential oils, and other secondary metabolites beneficial to human health (Devi and Singh, 2014).

While the majority of plant species are not considered threatened (70%), a notable proportion (30%) are either endangered or threatened, which raises concerns regarding their conservation (Pandey *et al.*, 2024). Habitat loss, overharvesting, and climate change are key factors contributing to the decline in plant populations (Keisham and Sharma, 2012). The fact that 10% of the species were categorized as endangered highlights the urgent need for conservation strategies, particularly for high-value medicinal species (Chanu and Singh, 2017). Over-exploitation of these species due to their therapeutic properties can lead to population decline if not managed sustainably. Efforts must focus on protecting plant habitats, implementing sustainable harvesting practices, and increasing awareness within local communities about the importance of conservation (Singh and Singh, 2010). Engaging indigenous communities in conservation initiatives is crucial to preserving both biodiversity and traditional knowledge (Devi and Singh, 2015).

The prominence of the Zingiberaceae family (30%) in the study is noteworthy, as plants from this family, such as *Hedychium flavum*, *Alpinia galanga*, and *Amomum aromaticum*, are well-known for their medicinal and economic significance (Singh and Roy, 2017). These plants are not only used in traditional medicine but also hold cultural importance in the region, where they are commonly employed as spices and in rituals (Mehta *et al.*, 2022). The relatively high representation of the Lamiaceae (15%) and Asteraceae (12%) families reflects the presence of species utilized for medicinal and non-medicinal purposes, such as culinary herbs and ornamental plants (Thounaojam and Sharma, 2020). The Fabaceae family (10%) is another significant contributor, known for its role in nitrogen fixation and soil improvement, which is critical for maintaining the ecological balance of the area (Yadav *et al.*, 2018). The diversity of plant families in the study area indicates a high degree of ecological complexity and potential for discovering novel bioactive compounds with pharmacological and agricultural applications (Sharma and

Table 1. Medicinal and edible plants and their uses

Sl. No	Scientific name	Sanskrit name	Local name	Family	Hab.	M/NM	Part use	Uses
1	<i>Acacia concinna</i> (Willd.) DC.	Shikakai	Chigonglei	Fabaceae	C	M	Pds, Lvs	Used for hair care, dandruff treatment, and as a natural cleanser.
2	<i>Acorus calamus</i>	Vacha	Ok-hidak	Acoraceae	H(P)	M	Rh	Used for digestive disorders, respiratory issues, and as a memory enhancer.
3	<i>Adenostemma lavenia</i> (L.) Kuntze	Vanajira	Lalukok	Asteraceae	H(A)	NM	Lvs, Rt	Used for skin diseases, wound healing, and fever.
4	<i>Adiantum philippense</i> (L.)	Hamsapad	Khongjak	Pteridaceae	F(P)	NM	Fro, Rh	Used for respiratory ailments, burns, and skin infections.
5	<i>Ageratum conyzoides</i> (L.)	Visamuti	Khongjainapi Pale blue	Asteraceae	H(A)	NM	WP	Used for wound healing, fever, and anti-inflammatory purposes.
6	<i>Ageratum houstonianum</i> Mill.	Visamustih	Khongjainapi Deep blue	Asteraceae	H(A)	NM	Lvs, Fls	Used as an insect repellent and for skin infections.
7	<i>Ajuga bracteosa</i> Wall. ex Benth.	Nilkanthi	Lungemem	Lamiaceae	H(P)	M	WP	Used for fever, liver disorders, and as an anti-inflammatory.
8	<i>Albizia chinensis</i> (Osbeck) Merr.	Bhandi	Phaklak	Fabaceae	T(P)	M	Br, Lvs	Used for skin diseases, anti-inflammatory, and respiratory ailments.
9	<i>Allium hookeri</i> Thwaites	Unknown	Maroinapakpi	Amaryllidaceae	H(P)	M	Blb, Lvs	Used for digestive problems, cholesterol reduction, and as an antioxidant.
10	<i>Allium sativum</i> (L.)	Lashuna	Chanum	Amaryllidaceae	H(B)	M	Blb	Used for heart health, blood pressure regulation, and antimicrobial properties.
11	<i>Allium tuberosum</i> Rottler ex Spreng.	Unknown	Maroin-akuppi	Amaryllidaceae	H(P)	M	Lvs, Blb	Used for digestive issues, kidney function, and immunity boost.
12	<i>Alysicarpus monilifer</i> (L.) DC.	Minalimi	Khumbhal	Fabaceae	H(A)	NM	WP	Used for urinary disorders and skin infections.
13	<i>Amaranthus spinosus</i> (L.)	Tanduliya	Chengkruk	Amarant-haceae	H(A)	NM	Lvs, Sd	Used for anemia, kidney problems, and as a diuretic.
14	<i>Ambrosia artemisiifolia</i> (L.)	Unknown	Khalong	Asteraceae	H(A)	NM	Lvs, Fls	Used for allergies and skin irritation.
15	<i>Amomum aromaticum</i> Roxb.	Kakola	Namra	Zingiberaceae	H(P)	M	Rh	Used for digestive problems, nausea, and antimicrobial purposes.
16	<i>Andrographis paniculata</i> (Burm. f.) Nees	Kalamegha	Bhubati	Acanthaceae	H(A)	M	WP	Used for immunity boosting, fever, and liver disorders.

-contd.-

17	<i>Aquilaria agallocha</i> Roxb.	Agaru	Agar	Thymelaeaceae	T(P)	M	HW	Used for perfumes, wound healing, and respiratory disorders.
18	<i>Argyreia nervosa</i> (Burn. f.) Bojer	Vridhadaruka	Pungdingbi	Convolvulaceae	C(P)	NM	Lvs, Rt	Used for nerve disorders, stress relief, and reproductive health.
19	<i>Artocarpus lakoocha</i> Roxb.	Lakucha	Heirikokthong	Moraceae	T(P)	M	Br,Fr	Used for skin diseases, digestive health, and deworming.
20	<i>Boerhavia diffusa</i> (L.)	Punarnava	Pononua	Nyctaginaceae	H(P)	M	Rt, Lvs	Used as a diuretic, for kidney diseases, and liver protection.
21	<i>Cajanus cajan</i> (L.) Millsp.	Adhaki	Mairongbi	Fabaceae	S(P)	M	Lvs, Sd	Used for anemia, respiratory problems, and diabetes management.
22	<i>Calotropis gigantea</i> (L.) W.T. Aiton	Arka	Ang-got	Apocynaceae	S(P)	NM	Lvs, La, Fls	Used for joint pain, wound healing, and skin diseases.
23	<i>Cassia alata</i> (L.)	Dadughna	Daopata	Fabaceae	S(P)	M	Lvs	Used for fungal infections, skin diseases, and constipation.
24	<i>Cassi fistula</i> (L.)	Aragvadha	Chahui	Fabaceae	T(P)	M	Pds, Lvs	Used as a laxative, for skin disorders, and blood purification.
25	<i>Cassia occidentalis</i> (L.)	Kasamarda	Khangkhong	Fabaceae	H(A)	M	Rt, Lvs, Sd	Used for liver disorders, fever, and constipation.
26	<i>Centella asiatica</i> (L.) Urb.	Mandukaparni	Peruk	Apiaceae	H(P)	M	WP	Used for memory enhancement, skin diseases, and wound healing.
27	<i>Cinnamomum tamala</i> (Buch.-Ham.) T. Nees and Eberm	Tejapatra	Tejpata	Lauraceae	T(P)	M	Lvs, Br	Used for digestion, diabetes, and as a spice.
28	<i>Cissampelos pareira</i> (L.)	Patha	Velvet leaf	Menispermaceae	C(P)	M	Rt, Lvs	Used for urinary tract infections, fever, and respiratory infections.
29	<i>Citrus ganrhini</i> Lush.	Nimbuka	Kachaichampra	Rutaceae	T(P)	NM	Lvs, Fr	Used for digestion, vitamin C deficiency, and digestive issues.
30	<i>Clerodendrum indicum</i> (L.) Kuntze	Bharangi	Charoitong	Lamiaceae	S(P)	NM	Lvs, Rt	Used for fever, respiratory ailments, and digestive issues.
31	<i>Clerodendrum siphonanthis</i> (Buch.-Ham. ex D. Don)	Unknown	Kuthapangouba	Lamiaceae	S(P)	M	Lvs, Rt	Used for anti-inflammatory and pain relief.
32	<i>Clerodendrum viscosum</i> Vent.	Bharangi	Kuthapamabi	Lamiaceae	S(P)	M	Lvs, Rt	Used for skin diseases, fever, and digestive disorders.

33	<i>Coccinia grandis</i> (L.) Voigt	Bimbi	Kwakthabi	Cucurbitaceae	C (P)	M	Lvs, Fr	Used for diabetes, liver protection, and as a vegetable.
34	<i>Curcuma amada</i> Roxb.	Amragandhi	Yai heino-unambi	Zingiberaceae	H (P)	M	Rh	Used for digestion, anti-inflammatory purposes, and skin diseases.
35	<i>Curcuma angustifolia</i> Roxb.	Haridra	Yaipan	Zingiberaceae	H (P)	M	Rh	Used for digestion and wound healing.
36	<i>Curcuma longa</i> (L.)	Haridra	Yaingang	Zingiberaceae	H (P)	M	Rh	Used for anti-inflammatory, skin diseases, and digestive health.
37	<i>Datura metel</i> (L.)	Dhatura	Sagoihida	Solanaceae	S (P)	M	Lvs, Sd	Used for asthma, pain relief, and anti-inflammatory purposes.
38	<i>Desmodium gangeticum</i> (L.) DC.	Shalaparni	Kamuba	Fabaceae	H (P)	M	Rt, Lvs	Used for fever, inflammation, and liver disorders.
39	<i>Dillenia indica</i> (L.)	Karnarda	Hei-gri	Dilleniaceae	T (P)	M	Fr, Br	Used for stomach ailments, respiratory disorders, and as a tonic.
40	<i>Eclipta prostrata</i> (L.)	Bhringraj	Uchisumbal	Asteraceae	H (A)	NM	WP	Used for hair growth, liver protection, and skin diseases.
41	<i>Flemingia strobilifera</i> (L.) W.T. Aiton	Simbusak	Luck plant	Fabaceae	S (P)	M	Lvs, Rt	Used for skin diseases, fever, and digestive disorders.
42	<i>Hedychium flavum</i> Roxb.	Haridra	Loklei	Zingiberaceae	H (P)	M	Rh	Used for digestive disorders, antimicrobial, and anti-inflammatory purposes.
43	<i>Hibiscus rosa-sinensis</i> (L.)	Japâ	Jubakusum	Malvaceae	S (P)	M	Fls, Lvs	Used for hair growth, menstrual disorders, and skin care.
44	<i>Homalomena aromatica</i> (Spreng.) Schott	Kusuma	Gandhak-aucha	Araceae	H (P)	M	Rh	Used for pain relief, digestion, and stress reduction.
45	<i>Justicia adhatoda</i> (L.)	Vâsaka		Acanthaceae	S (P)	M	Lvs	Used for respiratory ailments, cough, and asthma.
46	<i>Kaempferia rotunda</i> (L.)	Bhûmicha	Leibak lei	Zingiberaceae	H (P)	NM	Rh	Used for pain relief, digestion, and skin diseases.
47	<i>Lantana camara</i> (L.)	Chaturangi	Nongban lei	Verbenaceae	S (P)	M	Lvs, Fls	Used for wound healing, insect repellent, and fever.
48	<i>Leucas aspera</i> (Willd.) Link	Dronapushpi	Mayangambum	Lamiaceae	H (A)	M	WP	Used for fever, respiratory ailments, and skin diseases.
49	<i>Magnolia champaca</i> (L.) Baill. ex Pierre	Champa	Leihaoan gangba	Magnoliaceae	T (P)	NM	Fls, Br	Used for stress relief, perfumes, and digestive issues.

50	<i>Melastoma malabathricum</i> L.	Tinisah	Yachubi	Melastomataceae	S (P)	M	Lvs, Rt	Used for wound healing, digestive issues, and skin care.	
51	<i>Melia azedarach</i> (L.)	Maha-Nimba	Sejark	Meliaceae	T (P)	NM	Lvs, Sd	Used for deworming, skin diseases, and fever.	
52	<i>Melothria perpusilla</i> (Blume) Cogn.	Kaknachi	Lamthabi	Cucurbitaceae	C (P)	NM	Fr, Lvs	Used for digestive issues and as a vegetable.	
53	<i>Mikania micrantha</i> Kunth	Arkallata	Oorihin	Asteraceae	C (P)	M	Lvs, St	Used for wound healing, fever, and pain relief.	
54	<i>Mimosa pudica</i> (L.)	Lajalu	gchabi	Fabaceae	H (A)	M	Lvs, Rt	Used for urinary disorders, pain relief, and skin diseases.	
55	<i>Momordica charantia</i> (L.)	Kâravella	Karota	Cucurbitaceae	C (A)	NM	Fr, Lvs	Used for diabetes, digestion, and as a vegetable.	
56	<i>Mussaenda roxburghii</i> Hook.f.	Masumda	Hanurei	Rubiaceae	S (P)	M	Lvs, Rt	Used for skin infections and wound healing.	
57	<i>Nyctanthes arbor-tristis</i> (L.)	Parijat	Singgarei	Oleaceae	ST (P)	M	Fls, Lvs	Used for fever, liver protection, and joint pain.	
58	<i>Ocimum basilicum</i> (L.)	Maha-Tulasi	Naosek	Lamiaceae	H (A)	M	Lvs, Sd	Used for digestion, respiratory ailments, and stress relief.	
59	<i>Oroxylum indicum</i> (L.) Kurz	Shyonaka	Shamba	Bignoniaceae	T (P)	NM	Br, Rt	Used for fever, inflammation, and respiratory issues.	
60	<i>Oxalis corniculata</i> (L.)	Amlapatra	Yensil	Oxalidaceae	H (A)	M	WP	Used for digestion, fever, and skin diseases.	
61	<i>Paederia foetida</i> (L.)	Prassarini	Oinum	Rubiaceae	C (P)	M	Lvs, St	Used for digestive health and anti-inflammatory purposes.	
62	<i>Parthenocissus quinquefolia</i> (A. Cunn.) Merr.	Ajashringi	Yongchak	Fabaceae	T (P)	M	Sd, Br	Used for digestion and as a vegetable.	
63	<i>Passiflora edulis</i> Sims	Krishna	Shitaphal	Passifloraceae	C (P)	M	Lvs, Fr	Used for stress relief, sleep disorders, and digestion.	
64	<i>Piper betle</i> (L.)	Kamala	Tambula	Kwamana	Piperaceae	C (P)	M	Lvs	Used for digestion, oral health, and antimicrobial properties.
65	<i>Piper nigrum</i> (L.)	Maricha	Golmorch	Piperaceae	C (P)	M	Fr	Used for digestion, respiratory disorders, and as a spice.	
66	<i>Plumbago zeylanica</i> (L.)	Chitraka	Telhidakan	Plumbaginaceae	S (P)	M	Rt, Lvs	Used for skin diseases, digestive issues, and fever.	
67	<i>Portulaca oleracea</i> (L.)	Loni	Leibakkundo	Portulacaceae	H (A)	M	WP	Used for digestion and skin care.	
68	<i>Rhus chinensis</i> Mill.	Unknown	Heimang	Anacardiaceae	T (P)	M	Fr, Br	Used for digestive disorders and fever.	
69	<i>Ricinus communis</i> 9 (L.)	Eranda	Kege	Euphorbiaceae	S (P)	M	Sd, Lvs	Used as a laxative and for skin care.	

70	<i>Scoparia dulcis</i> (L.)	Pashana bheda	Sumjít manbi	Plantagin aceae	H (A)	M	WP	Used for diabetes, digestion, and fever.
71	<i>Senna tora</i> (L.) Roxb.	Chakra marda	Thaonum	Fabaceae	H (A)	M	Lvs, Sd	Used as a laxative and for skin diseases.
72	<i>Sida acuta</i> Burm. f.	Bala	Uhannakuppi	Malvaceae	S (P)	M	WP	Used for fever, pain relief, and inflammation.
73	<i>Solanum nigrum</i> (L.)	Kakmachi	Morokmaan	Solanaceae	H (A)	M	Lvs, Fr	Used for liver protection and digestive issues.
74	<i>Solanum torvum</i> Sw.	Bhuringani	Leipungkhang	Solanaceae	S (P)	M	Fr, Rt	Used for respiratory issues and fever.
75	<i>Tephrosia purpurea</i> (L.) Pers.	Sharapunkha	Fabaceae	H (P)	M	WP	Used for liver protection and fever.	
76	<i>Timospora cordifolia</i> (Willd.) Hook. f. and Thomson	Guduchi	Ningthou khonglee	Menisper maceae	C (P)	M	St, Lvs	Used for immunity boosting and fever.
77	<i>Vitex negundo</i> (L.)	Nirgundi	Urikshibi	Lamiaceae	S (P)	M	Lvs, Sd	Used for respiratory disorders and pain relief.
78	<i>Withania somnifera</i> (L.) Dunal	Ashwag andha	Ashwagandha	Solanaceae	S (P)	M	Rt, Lvs	Used for stress relief and strength.
79	<i>Zanthoxylum armatum</i> D.C.	Tejovati	Mukthrubi	Rutaceae	S (P)	M	Fr, Br	Used for digestion and toothache.
80	<i>Zingiber officinale</i> Roscoe	Shunti	Shing	Zingibera	H (P)	M	Rh	Used for digestion, nausea, and cold relief.

Abbreviations: **H** = Herb; **S** = Shrub; **T** = Tree; **C** = Climber; **F** = Fern; **ST** = Small Tree; **P** = Perennial; **A** = Annual; **B** = Biennial; **Pds** = Pods; **Lvs** = Leaves; **Rh** = Rhizome; **Rt** = Roots; **Fls** = Flowers; **Fr** = Fruit; **Fronds**; **Br** = Bark; **Blb** = Bulbs; **Sd** = Seeds; **St** = Stem; **HW** = Heartwood; **WP** = Whole plant; **La** = Latex; **M** = Marketable; **NM** = Non – marketable

Devi, 2013). Additionally, the distribution of these species across different families highlights ecological interdependence, where plants provide vital ecosystem services benefiting both flora and fauna (Naorem and Devi, 2019). Conservation efforts should include the establishment of protected areas, sustainable harvesting initiatives, and the integration of traditional knowledge with modern conservation strategies (Devi *et al.*, 2016). Community-based conservation programs can further empower local populations to take an active role in preserving their environment and cultural practices related to plant use (Singh and Devi, 2015).

This study emphasizes the rich ethnobotanical heritage of the region, the crucial role of plant diversity in local healthcare, and the necessity for targeted conservation actions to protect valuable plant species (Wangkheirakpam and Khumbongmayum, 2020). Further research into the pharmacological properties of these plants and the identification of additional species with medicinal potential should be a priority for future studies (Singh and Singh, 2014). By combining traditional knowledge with modern scientific methodologies, this research aimed to contribute to a deeper understanding of the relationships between plants, people, and the environment, thereby supporting both ecological sustainability and the economic well-being of local communities in Manipur.

REFERENCES

Chanu, N. T. and R. K. Singh, 2017. Ethnomedicinal uses of *Zingiber officinale* in Manipur. *J. Med. Herbs Ethnomed.* **3**(1):78-83.

Devi, O. S. and R. K. Singh, 2014. Phytochemical screening of *Piper betle* leaves. *Int. J. Herb. Med.* **2**(2):51-56.

Devi, O. S. and T. N. Singh, 2015. Ethnomedicinal plants used by the Meitei community of Manipur, India. *J. Ethnopharmacol.* **175**:99-111.

Devi, M.B., N.R. Singh and C.B. Singh, 2016 Traditional Knowledge and Conservation of medicinal plants in the sacred groves of Manipur, northeast India. *Int. J. Conserv. Sci.* **7** (1) : 205-212.

Keisham, R. and B. D. Sharma, 2012. Traditional phytotherapy for dermatological disorders in Manipur. *Ethnobot. Leafl.* **16**:133-142.

Mehta, R., B. Gogoi, H. S. Datta and P. Pathak, 2022. Domestication and popularization of underutilised and wild fruits for fruit diversification: A review, *J. Soils and Crops*, **32**(1):1-8.

Naorem, L. D. and R. Devi, 2018. Antioxidant and hepatoprotective effects of *Nyctanthes arbor-tristis*. *J. Tradit. Complement. Med.* **8**(1):47-53.

Naorem, R. and T. Devi, 2019. Ethnomedicinal potential of *Solanum nigrum* from Manipur. *J. Herb. Med.* **12**(1):34-42.

Pandey, M., S. P. Joshi and S. Sharma, 2024. Utilization pattern of medicinal plants in Jaunpur range of Mussoorie Forest Division, Uttarakhand, *J. Soils and Crops*, **34**(1):202-207.

Patel, K. and K. Srinivasan, 2015. Bioactive compounds in *Momordica charantia* and its therapeutic potential. *Food Funct.* **6**(2):544-563.

Phurailatpam, D. and A. Khumbongmayum, 2020. Medicinal flora of Thoubal district, Manipur: A systematic review. *Int. J. Bot. Stud.* **5**(4):90-98.

Rai, P. K., H. Lalramnghinglova and R. Lalhlimpuiia. 2021. Documentation of medicinal plants in Mizoram and Manipur: An ethnobotanical perspective. *Indian J. Tradit. Knowl.* **20**(2):376-385.

Sharma, B. K. and M. Devi, 2013. Anti-inflammatory activity of selected medicinal plants from Manipur. *J. Med. Plants Res.* **7**(10):560-567.

Singh, A. and B. Singh, 2014. Evaluation of antioxidant potential of *Curcuma longa* and *Curcuma amada* from Northeast India. *Asian Pac. J. Trop. Biomed.* **4**(3):92-97.

Singh, D. and S. Roy, 2017. Traditional knowledge on *Hedychium flavum* in Northeast India. *J. Ethnobiol. Ethnomed.* **13**(1):1-8.

Singh, H. B. and R. Singh, 2010. Medicinal plants of Northeast India with special reference to Manipur and their conservation. *Biodivers. Conserv.* **19**(1):31-42.

Singh, T. B. and L. Devi, 2015. Medicinal properties of *Ricinus communis*. *Asian J. Pharm. Sci.* **10**(4):421-430.

Thounaojam, C. and R. Sharma, 2020. Ethnobotanical importance of *Tephrosia purpurea* in Manipur. *J. Med. Plant Stud.* **8**(3):89-97.

Wangkheirakpam, S. S. and G. K. N. Chhetry, 2018. Traditional medicinal plants used for primary healthcare in Manipur, Northeast India. *J. Herb. Med.* **11**:56-65.

Wangkheirakpam, S. and A. Khumbongmayum, 2020. Ethnobotany of *Withania somnifera* in Manipur. *Indian J. Tradit. Knowl.* **19**(4):615-622.

Yadav, B.K., A.S. Sidhu and Deepak Kumar, 2018. Distribution and indexation of plant available nutrients in Bathinda district of South-West Punjab, India, *J. Soils and Crops*, **28**(1):8-18.

Rec. on 03.04.2025 & Acc. on 18.04.2025